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Abstract. In this paper, we studied scheduling problems with Genetic 
Algorithms (GA) in Flexible Manufacturing Cells (FMC). We used a GA for 
solving the optimization scheduling problem. First, we developed an FMC with 
industrial characteristics, with the objective of studying scheduling problems in 
these types of manufacturing systems. Then, we developed a software tool, 
called HybFlexGA, to study scheduling problems, with GA, in the FMC. 
Finally, we applied the HybFlexGA to solve scheduling problems in the FMC. 
The practical results obtained from the FMC for the various scheduling 
problems show how efficient HybFlexGA is in solving these problems. 

Keywords: Flexible manufacturing cells, scheduling and genetic algorithms. 

1   Introduction 

Scheduling problems in Flexible Manufacturing Cells (FMC) are studied in this 
paper. We also use Genetic Algorithms (GA) to optimize this type of problems. We 
have developed an FMC with industrial characteristics and a software tool, called 
HybFlexGA, with the objective of studying scheduling problems in this type of 
manufacturing systems. The FMC and the HybFlexGA were used to study single 
machine total weighted tardiness (SMTWT) problems.  

In SMTWT problems each job i has an associated processing time pi, a weight wi, 
and a due date di, and the job becomes available for processing at time zero. The 
tardiness of a job i is defined as Ti=max{0, Ci-di}, where Ci is the completion time of 
job i in the current job sequence. The objective is to find a job sequence which 

minimizes the sum of the weighted tardiness given by ∑
=

n

i
ii Tw

1
. . Because the 

SMTWT problem is NP-hard, optimal solutions for this problem would require a 
computational time that increases exponentially with the problem size [1] and [2]. In 
recent years, several heuristics, such as Simulated Annealing, Tabu Search, Genetic 
Algorithms and Ant Colony [1] and [3], have been proposed to solve the SMTWT 
problem.  
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2   Developed Flexible Manufacturing Cell 

An FMC with industrial characteristics was developed with the objective of studying 
scheduling problems in these types of manufacturing systems. The hierarchical 
structure implemented in the FMC is shown in Fig. 1. This FMC is comprised of four 
sectors, which are controlled by PCs and different software [5] and [6]. The four 
sectors are: 

− The manufacturing sector, made up of two CNC machines (mill and lathe), 
one ABB IRB140 robot and one buffer (see Fig. 1); 

− The assembly sector, made up of one Scorbot ER VII robot, one small 
conveyor and an assembly table (see Fig. 1); 

− The handling sector, made up of one big conveyor (see Fig. 1); 
− The storage sector, made up of five warehouses and one robot ABB IRB1400 

(see Fig. 1). 
Control of existing equipment in each sector is carried out by four computers: PC1 

– manufacturing sector, PC2 – assembly sector, PC3 – handling sector and PC4 – 
storage sector. Coordination, synchronization and integration of the four sectors is 
carried out by the of FMC Manager computer. 

The first layer contains the engineering and design functions where the product is 
designed and developed. The outputs of this activity are the drawings and the bill of 
materials. 

The second layer is process planning. Here the process plans for manufacturing, 
assembling and testing are carried out. 

The third layer is scheduling. The process plans together with the drawing, the bill 
of materials and the customer orders are the input to scheduling. The output of 
scheduling is the release of the order to the manufacturing floor. The PCM – FMC 
Manager is responsible for the engineering, planning and scheduling activities. 

The fourth layer is control. Manufacturing is controlled by a hierarchically 
structured real time computer system (PC1, PC2, PC3 and PC4). Theirs set points are 
the operating parameters used to start and control the activities on the production 
floor. 

The fifth layer is data acquisition. The operations of the machine tools and material 
movement equipment are monitored by a data acquisition system. The collected data 
represents the state of the manufacturing system and is the feedback information used 
for control. 

The central computer (FMC Manager) controls all of the production of the FMC, 
calling several computers and using local nets to exchange data which allow control 
and supervision of the operations in real time, picking up and processing information 
flows from the various resources. Concisely, the FMC manager PC is responsible for: 

− Developing and designing new products to manufacture – the engineering 
layer; 

− Production plans, assemblies and product tests – the planning layer; 
− Finding the optimum processing sequence so as to optimize CNC machine 

use – the scheduling layer; 
− Coordination, integration and control of all the sectors in the FMC; 
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− Maintaining a database of jobs to manufacture, including the respective NC 
programmes; 

− Synchronizing the various sectors so as to produce variable lots of different 
types of parts depending on the customer’s orders; 

− Monitoring the current state of production; 
− Guaranteeing tolerance of failures, safety and coherence of data. 

 

3   Hybrid and Flexible Genetic Algorithm 

We developed a software tool, called HybFlexGA (Hybrid and Flexible Genetic 
Algorithm), to solve scheduling problems in developed FMC (see the third layer in 
Fig. 1). The HybFlexGA was coded in C++ language and its architecture is composed 
of three modules: interface, pre-processing and scheduling module. 
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Fig. 1.  FMC hierarchical structure. 

Scheduling Jobs in Flexible Manufacturing Cells with Genetic Algorithms     33



3.1   Interface Module 

The interface module with the user is very important for the scheduling system’s 
success. Thus, this interface should be user-friendly and dynamic so as to allow easy 
manipulation of the scheduling plan, jobs, and so forth. This interface allows the 
connection between the user and the scheduling module, facilitating data entry (for 
example, parameter definition and problem definition) and the visualization of the 
solutions for the scheduling module. Fig. 2 shows the interface window. 
 

 
Fig. 2. Interface window. 

3.2   Pre-processing Module 

The inputs of the pre-processing module are the problem type and the scheduling 
parameters. The instance of the scheduling problem can be randomly generated or 
generated by PC file, as shown in Fig. 2. This module pre-processes the input 
information and then sends the data to the next module – the scheduling module. 

3.3   Scheduling Module 

The objective of the scheduling module is to give the optimal solution for any 
scheduling problem. If the optimal solution is not found, the GA gives the best 
solution found (near-optimal solution). In this module, we implemented the GA 
shown in Fig. 3. 
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Step 1 - Initialization 
Let t=0, where t is the generation index, and generate an initial population 
randomly 0Ψ  including Npop solutions (Npop is the number of solutions in each 
population, i.e., Npop is the population size). The number of solutions 
(chromosomes) in the t generation is given by { }popN

tttt xxxΨ ,...,, 21= . 
Step 2 - Selection 
Select pairs of solutions (parents’ chromosomes) from the current population 

tΨ . Each chromosome i
tx  is selected according to the selected operator chosen 

in the interface module. 
Step 3 - Crossover 
Apply a crossover operator, selected in the interface module, to each of the 
selected pairs in step 2. This way, new chromosomes will be generated 
according to the selected crossover probability (Pc). 
Step 4 - Mutation 
Apply a mutation operator, selected in the interface module, to the generated 
chromosomes in step 3, according to the selected mutation probability (Pm). 
Step 5 – Elitism 
Select the best Npop chromosomes to generate the next population 1+tΨ  and the 
other chromosomes are eliminated. Thus, the best chromosomes, i.e. solutions, 
will survive into the next generation. However, duplicated solutions may occur 
in 1+tΨ . To minimize this, new chromosomes are generated for all duplicated 
chromosomes. 
Step 6 – Termination test 

Stops the algorithm if the stopping condition, previously specified in the 
interface module, is satisfied. Otherwise, update t for t:=t+1 and return to step 2. 

 

Fig. 3. GA implemented in the scheduling module. 

4   Genetic Operators 

In this section, we propose a new concept of genetic operators for scheduling 
problems. We evaluate each of various genetic operators with the objective of 
selecting the best performance crossover and mutation operators. 

4.1   Crossover Operators 

Crossover is an operation to generate a new sequence from two sequences. We 
examine the following crossover operators: 

− One-point crossover: 1 child (OPC1C) in Fig. 4 a); 
− Two-point crossover: 1 child (Version I) (TPC1CV1) in Fig. 4 b); 
− Two-point crossover: 1 child (Version II) (TPC1CV2) in Fig. 4 c). 

We also developed crossover operators with 2, 3 and 4 children. The crossover 
operators with 2 children are: 

− One-point crossover: 2 children (OPC2C). This crossover is similar to the 
OPC1C, but it generates two children; 
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− Two-point crossover: 2 children (Vers. I) (TPC2CV1). This crossover is 
similar to the TPC1CV1, but it generates two children; 

− Two-point crossover: 2 children (Vers. II) (TPC2CV2). This crossover is 
similar to the TPC1CV2, but it generates two children. 

The crossover operators with 3 children are: 
− Two-point crossover: 3 children (Version I) (TPC3CV1). This crossover is a 

mix of TPC1CV1 plus TPC2CV1; 
− Two-point crossover: 3 children (Version II) (TPC3CV2). This crossover is a 

mix of TPC1CV2 plus TPC2CV2. 
The crossover operator with 4 children is called a two-point crossover: 4 children 
(TPC4C). This operator is a mix of TPC2CV1 plus TPC2CV2. 
The following three crossover operators are also examined in this paper for FMC 
scheduling problems: 

− Order crossover (OX) in Goldberg [4]; 
− Cycle crossover (CX) in Oliver [7]; 
− Position based crossover (PBX) in Syswerda [8]. 

 
  

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

 
 

Child J1 J2 J3 J5 J10 J7 J8 J4 J6 J9

 
 

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

(a) One-point crossover: 1 child. 

 
Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 

 
 

Child J1 J2 J3 J5 J7 J8 J4 J6 J9 J10 
 
 

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9 

(b) Two-point crossover: 1 child (Vers. I). 
 

  
Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

 
 

Child J2 J10 J3 J4 J5 J6 J7 J8 J1 J9

 
 

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9
 

(c) Two-point crossover: 1 child (Vers. II). 
 

Fig. 4. Illustration of crossover operators. 

4.2   Mutation Operators 

We examined the following four mutations used by Murata in [9]: adjacent two-job 
change (Adj2JC), arbitrary two-job change (Arb2JC), arbitrary three-job change 
(Arb3JC) and shift change (SC). 

We developed a new mutation operator called the arbitrary 20%-job change 
(Arb20%JC), as we can see in Fig. 5. This mutation selects 20% of the jobs in the 
child chromosome. The 20% of the jobs to be changed are arbitrarily and randomly 
selected, and the order of the selected jobs after the mutation is randomly specified. 
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The percentage in this mutation operator gives the operator some flexibility, i.e. the 
number of jobs to be changed depends on the size of the chromosome.  

 

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

 
 
J1 J7 J3 J4 J5 J6 J2 J8 J9 J10

 
Fig. 5. Arbitrary 20%-job change. 

4.3   Examination of Crossover and Mutation Operators 

The aim of this subsection is to examine the twelve crossover operators and the five 
mutation operators, presented in the last two subsections. 

When the crossover operators were examined the mutation operator was not used 
and when the mutation operators were examined the crossover operator was not used. 
Each crossover operator was examined by using the following conditions: number of 
tests, 20; initial population tΨ , constant; number of jobs, 40; instance used, constant; 
population size Npop, 20, 40, 60, 80 and 100; stopping condition, 1000 generations; 
crossover probabilities Pc, 0.2, 0.4, 0.6, 0.8 and 1.0; mutation probabilities Pm, 0.2, 
0.4, 0.6, 0.8 and 1.0; mutation operators and mutation probabilities, not used in the 
examination of crossover operators; crossover operators and crossover probabilities, 
not used in the examination of mutation operators. 

We used the following performance measure with the aim of evaluating each 
genetic operator: 

)()( endinitial xfxfePerformanc −=  
(1) 

where initialx  is the best chromosome in the initial population and endx  is the best 

chromosome in the last population. That is, )( initialxf  is the fitness average (of the 20 

computational tests) of the best chromosomes in the initial population and )( endxf  is 
the fitness average of the best chromosomes at the end of the 1000 generations. The 
performance measure in (1) gives the total improvement in fitness during the 
execution of the genetic algorithm. 

We used 20 computational tests to examine each crossover and mutation operator. 
The average value of the performance measure in (1) was calculated for each 
crossover and mutation operator with each crossover probability (Pc), each mutation 
probability (Pm) and each population size (Npop). Table 1 and Table 2 show the best 
average value of the performance measure obtained by each crossover operator and 
by each mutation operator with its best crossover probability, best mutation 
probability and best population size.  
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Table 1. Classification of the crossover operators. 

Position Crossover Pc Npop Performance 
1st TPC4C 1.0 100 3834.1 
2nd TPC3CV2 1.0 100 3822.9 
3rd TPC2CV2 1.0 100 3821.8 
4th PBX 1.0 80 3805.8 
5th TPC1CV2 0.8 100 3789.3 
6th CX 0.8 80 3788.7 
7th TPC3CV1 0.8 80 3680.2 
8th TPC2CV1 1.0 80 3662.1 
9th OPC2C 0.6 100 3647.8 

10th OX 1.0 100 3635.4 
11th TPC1CV1 1.0 100 3624.7 
12th OPC1C 0.6 100 3570.5 

 

Table 2. Classification of the mutation operators. 

Position Mutation Pm Npop Performance 
1st Arb20%JC 1.0 100 3833.9 
2nd Arb2JC 0.8 100 3826.4 
3rd Arb3JC 1.0 60 3814.9 
4th SC 0.8 60 3673.5 
5th Adj2JC 0.4 100 3250.4 

5   Computational Tests 

This section presents the computational results obtained with 40, 50 and 100 jobs. 
From the OR-Library [10] we randomly selected some instances of SMTWT 
problems with 40, 50 and 100 jobs. We used 20 computational tests for each instance 
of the SMTWT problem. We used the six best crossover operators (see Table 1) and 
the best mutation operator (see Table 2) in the HybFlexGA. Each instance of the 
SMTWT problem was examined using the following conditions: 

− Number of tests: 20; 
− Initial population tΨ : randomly generated; 
− Number of jobs: 40, 50 and 100; 
− Instance used: from the OR-Library [10]; 
− Population size Npop: 80 and 100 (see Table 1 and Table 2); 
− Stopping condition: 1000 generations for the instances with 40 and 50 jobs 

or the optimal solution, and 5000 generations for the instances with 100 jobs 
or the optimal solution; 

− Crossover operators: the six best crossover operators in Table 1; 
− Crossover probabilities Pc: 0.8 and 1.0 (see Table 1); 
− Mutation operators: the best mutation operator in Table 2; 
− Mutation probabilities Pm: 1.0 (see Table 2). 
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Table 3 shows the computational results obtained for the SMTWT problems with 
40, 50 and 100 jobs. In this table we have the number of tests with optimal solution, 
the CPU time average (in seconds) and the generation average for each instance 
problem. For example, we chose the TPC4C with Pc=1.0, Arb20%JC with Pm=1.0 and 
instance 40A (SMTWT problem with 40 jobs, from the OR-Library [10]) in the 
HybFlexGA. We used 20 computational tests for this instance. In these tests we 
obtained the optimal solutions in 16 tests. In these 16 tests, the CPU time average was 
362.4 seconds and the generation average was 593. 

As shown in Table 3, we obtained good results with the TPC4C+Arb20%JC, 
TPC3CV2+Arb20%JC and TPC2CV2+Arb20%JC combination, for all the instances 
with 40, 50 and 100 jobs. However, this table also shows the best results are obtained 
for the TPC4C+Arb20%JC combination. 

When we used the TPC4C+Arb20%JC combination, the HybFlexGA is very 
efficient. For example, in the six instances with 40, 50 and 100 jobs (see Table 3) the 
HybFlexGA found 20 tests with an optimal solution in four instances (40B, 50A, 50B 
and 100B), and 16 tests with optimal solutions in two instances (40A and 100A).  

Table 3. Computational results obtained for the SMTWT problems with 40, 50 and 100 jobs. 

Instance 40A 40B 50A 50B 100A 100B 
Optimal solution 6575 1225 2134 22 5988 8 

Tests with optimal solution 16 20 20 20 16 20 
CPU time average (sec.) 362.4 190.0 88.3 45.5 2405.1 523.9 

TPC4C 
+ 

Arb20%JC Generations average 593 284 107 54 1611 323 
Tests with optimal solution 13 15 18 20 15 20 
CPU time average (sec.) 382.9 231.3 112.3 50.4 3851.0 1012.4 

TPC3CV2 
+ 

Arb20%JC Generations average 725 402 158 70 3042 727 
Tests with optimal solution 8 16 17 20 9 20 
CPU time average (sec.) 369.1 216.8 146.2 92.0 3921.3 1339.8 

TPC2CV2 
+ 

Arb20%JC Generations average 380 449 246 152 3685 1142 
Tests with optimal solution 0 8 18 20 1 20 
CPU time average (sec.) ---- 236.1 144.6 86.3 2067.0 1413.6 

PBX 
+ 

Arb20%JC Generations average ---- 747 371 218 2957 1828 
Tests with optimal solution 0 3 13 20 1 19 
CPU time average (sec.) ---- 230.0 224.7 118.2 4104.0 2190.7 

TPC1CV2 
+ 

Arb20%JC Generations average ---- 609 487 252 4948 2405 
Tests with optimal solution 0 4 17 20 3 20 
CPU time average (sec.) ---- 165.3 107.8 51.0 2594.0 736.4 

CX 
+ 

Arb20%JC Generations average ---- 551 292 136 3912 1011 

6   Conclusion 

In this paper we developed an FMC and a software tool called HybFlexGA to study 
the scheduling of jobs in FMC with GA. We propose a new concept of genetic 
operators for scheduling of jobs in FMC. With the software tool HybFlexGA, we 
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examine the performance of various crossover and mutation operators by computing 
simulations on job scheduling problems. The HybFlexGA obtained good 
computational results in the instances of SMTWT problems with 40, 50 and 100 jobs 
(see Table 3). As we demonstrated, the HybFlexGA is very efficient with the 
TPC4C+Arb20%JC combination. With this combination, the HybFlexGA always 
found more optimal solutions than with the other combinations: 
TPC3CV2+Arb20%JC, TPC2CV2+Arb20%JC, and so on. When we used this 
combination (TPC4C+Arb20%JC) in the HybFlexGA, the genetic algorithm required 
fewer generations and less CPU time to find the optimal solutions. The results 
obtained in the scheduling problems of the FMC show how efficient HybFlexGA is in 
solving these problems. 
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