Scheduling Jobs in Flexible Manufacturing Cells with
Genetic Algorithms

Antdnio Ferrolho' and Manuel Crisdstomo®

! Superior School of Technology of Viseu, Polytechnic Institute of Viseu
Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
antferrolho@elect.estv.ipv.pt
2 Institute of Systems and Robotics, University of Coimbra

Polo II, 3030-290 Coimbra, Portugal

meris@isr.uc.pt

Abstract. In this paper, we studied scheduling problems with Genetic
Algorithms (GA) in Flexible Manufacturing Cells (FMC). We used a GA for
solving the optimization scheduling problem. First, we developed an FMC with
industrial characteristics, with the objective of studying scheduling problems in
these types of manufacturing systems. Then, we developed a software tool,
called HybFlexGA, to study scheduling problems, with GA, in the FMC.
Finally, we applied the HybFlexGA to solve scheduling problems in the FMC.
The practical results obtained from the FMC for the various scheduling
problems show how efficient HybFlexGA is in solving these problems.
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1 Introduction

Scheduling problems in Flexible Manufacturing Cells (FMC) are studied in this
paper. We also use Genetic Algorithms (GA) to optimize this type of problems. We
have developed an FMC with industrial characteristics and a software tool, called
HybFlexGA, with the objective of studying scheduling problems in this type of
manufacturing systems. The FMC and the HybFlexGA were used to study single
machine total weighted tardiness (SMTWT) problems.

In SMTWT problems each job 7 has an associated processing time p;, a weight wy,
and a due date d;, and the job becomes available for processing at time zero. The
tardiness of a job i is defined as T=max{0, C;-d;}, where C; is the completion time of
job i in the current job sequence. The objective is to find a job sequence which

minimizes the sum of the weighted tardiness given by Zwi.Ti. Because the
i=1

SMTWT problem is NP-hard, optimal solutions for this problem would require a

computational time that increases exponentially with the problem size [1] and [2]. In

recent years, several heuristics, such as Simulated Annealing, Tabu Search, Genetic

Algorithms and Ant Colony [1] and [3], have been proposed to solve the SMTWT

problem.
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2 Developed Flexible Manufacturing Cell

An FMC with industrial characteristics was developed with the objective of studying
scheduling problems in these types of manufacturing systems. The hierarchical
structure implemented in the FMC is shown in Fig. 1. This FMC is comprised of four
sectors, which are controlled by PCs and different software [5] and [6]. The four
sectors are:
— The manufacturing sector, made up of two CNC machines (mill and lathe),
one ABB IRB140 robot and one buffer (see Fig. 1);
— The assembly sector, made up of one Scorbot ER VII robot, one small
conveyor and an assembly table (see Fig. 1);
— The handling sector, made up of one big conveyor (see Fig. 1);
— The storage sector, made up of five warehouses and one robot ABB IRB1400
(see Fig. 1).

Control of existing equipment in each sector is carried out by four computers: PC1
— manufacturing sector, PC2 — assembly sector, PC3 — handling sector and PC4 —
storage sector. Coordination, synchronization and integration of the four sectors is
carried out by the of FMC Manager computer.

The first layer contains the engineering and design functions where the product is
designed and developed. The outputs of this activity are the drawings and the bill of
materials.

The second layer is process planning. Here the process plans for manufacturing,
assembling and testing are carried out.

The third layer is scheduling. The process plans together with the drawing, the bill
of materials and the customer orders are the input to scheduling. The output of
scheduling is the release of the order to the manufacturing floor. The PCM — FMC
Manager is responsible for the engineering, planning and scheduling activities.

The fourth layer is control. Manufacturing is controlled by a hierarchically
structured real time computer system (PC1, PC2, PC3 and PC4). Theirs set points are
the operating parameters used to start and control the activities on the production
floor.

The fifth layer is data acquisition. The operations of the machine tools and material
movement equipment are monitored by a data acquisition system. The collected data
represents the state of the manufacturing system and is the feedback information used
for control.

The central computer (FMC Manager) controls all of the production of the FMC,
calling several computers and using local nets to exchange data which allow control
and supervision of the operations in real time, picking up and processing information
flows from the various resources. Concisely, the FMC manager PC is responsible for:

— Developing and designing new products to manufacture — the engineering
layer;

— Production plans, assemblies and product tests — the planning layer;

— Finding the optimum processing sequence so as to optimize CNC machine
use — the scheduling layer;

— Coordination, integration and control of all the sectors in the FMC;
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Maintaining a database of jobs to manufacture, including the respective NC
programmes;

Synchronizing the various sectors so as to produce variable lots of different
types of parts depending on the customer’s orders;

Monitoring the current state of production;

Guaranteeing tolerance of failures, safety and coherence of data.

The software developed for this PC allows: (cont.)
- Coordination, integration and control all the

sectors in FMC. - Guarantecing tolerance of failures, safety

- Control and supervision in real time all the
operation in FMC.

- Maintaining a database of jobs to
manufacture, including the respective NC
programmes.

- Synchronizing the various sectors to produce
variable lots of different types of parts

and coherence of the data.

- Developing and designing new products to
manufacture — the engineering layer.

- Production plans, assemblies and product
tests — the planning layer.

- Finding the optimum processing sequence to
optimize CNC  machine use - the

depending on the customer’s orders. scheduling layer.
- Monitoring the current state of the

production.
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Fig. 1. FMC hierarchical structure.

3 Hybrid and Flexible Genetic Algorithm

We developed a software tool, called HybFlexGA (Hybrid and Flexible Genetic
Algorithm), to solve scheduling problems in developed FMC (see the third layer in
Fig. 1). The HybFlexGA was coded in C++ language and its architecture is composed
of three modules: interface, pre-processing and scheduling module.
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3.1 Interface Module

The interface module with the user is very important for the scheduling system’s
success. Thus, this interface should be user-friendly and dynamic so as to allow easy
manipulation of the scheduling plan, jobs, and so forth. This interface allows the
connection between the user and the scheduling module, facilitating data entry (for
example, parameter definition and problem definition) and the visualization of the
solutions for the scheduling module. Fig. 2 shows the interface window.

i Scheduling Problems in Flexible Manufacturing Cells

Single Machine Scheduling with Genetic Algorithms
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Fig. 2. Interface window.

3.2 Pre-processing Module

The inputs of the pre-processing module are the problem type and the scheduling
parameters. The instance of the scheduling problem can be randomly generated or
generated by PC file, as shown in Fig. 2. This module pre-processes the input
information and then sends the data to the next module — the scheduling module.

3.3 Scheduling Module

The objective of the scheduling module is to give the optimal solution for any
scheduling problem. If the optimal solution is not found, the GA gives the best
solution found (near-optimal solution). In this module, we implemented the GA
shown in Fig. 3.
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Step 1 - Initialization
Let =0, where ¢ is the generation index, and generate an initial population
randomly ¥ including N,,, solutions (N, is the number of solutions in each

population, ie., N,, is the population size). The number of solutions

. S _lr 2 N pop
(chromosomes) in the ¢ generation is given by ¥, = \x,, X, ,..., X, .

Step 2 - Selection
Select pairs of solutions (parents’ chromosomes) from the current population
¥, . Each chromosome x: is selected according to the selected operator chosen

in the interface module.

Step 3 - Crossover

Apply a crossover operator, selected in the interface module, to each of the
selected pairs in step 2. This way, new chromosomes will be generated
according to the selected crossover probability (P,).

Step 4 - Mutation

Apply a mutation operator, selected in the interface module, to the generated
chromosomes in step 3, according to the selected mutation probability (P,,).

Step 5 — Elitism

Select the best N, chromosomes to generate the next population ¥, and the
other chromosomes are eliminated. Thus, the best chromosomes, i.e. solutions,
will survive into the next generation. However, duplicated solutions may occur
in ¥, . To minimize this, new chromosomes are generated for all duplicated

chromosomes.
Step 6 — Termination test

Stops the algorithm if the stopping condition, previously specified in the
interface module, is satisfied. Otherwise, update ¢ for #-=¢+1 and return to step 2.

Fig. 3. GA implemented in the scheduling module.

4 Genetic Operators

In this section, we propose a new concept of genetic operators for scheduling
problems. We evaluate each of various genetic operators with the objective of
selecting the best performance crossover and mutation operators.

4.1 Crossover Operators

Crossover is an operation to generate a new sequence from two sequences. We
examine the following crossover operators:

— One-point crossover: 1 child (OPCIC) in Fig. 4 a);

— Two-point crossover: 1 child (Version I) (TPC1CV1) in Fig. 4 b);

— Two-point crossover: 1 child (Version II) (TPC1CV2) in Fig. 4 c).
We also developed crossover operators with 2, 3 and 4 children. The crossover
operators with 2 children are:

— One-point crossover: 2 children (OPC2C). This crossover is similar to the

OPCIC, but it generates two children;
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— Two-point crossover: 2 children (Vers. I) (TPC2CV1). This crossover is
similar to the TPC1CV1, but it generates two children;
— Two-point crossover: 2 children (Vers. II) (TPC2CV2). This crossover is
similar to the TPC1CV2, but it generates two children.
The crossover operators with 3 children are:
— Two-point crossover: 3 children (Version I) (TPC3CV1). This crossover is a
mix of TPC1CV1 plus TPC2CV1;
— Two-point crossover: 3 children (Version II) (TPC3CV2). This crossover is a
mix of TPC1CV2 plus TPC2CV2.
The crossover operator with 4 children is called a two-point crossover: 4 children
(TPCA4C). This operator is a mix of TPC2CV1 plus TPC2CV2.
The following three crossover operators are also examined in this paper for FMC
scheduling problems:
— Order crossover (OX) in Goldberg [4];
— Cycle crossover (CX) in Oliver [7];
— Position based crossover (PBX) in Syswerda [8].

Parent 1[I 3 ]05] 34 [Js [ J6 [ 7] Is [ o [J1o] Parent 1 [y [ 35 [35] Ja [ 5[ Jo [ 35 ] Js [ 3o 300
! 1

Child |J,|J2|J3|J5|J10|J7|J8|J4|Jf|.lg| Child  [J,[J2[ 33 [Is[ 37 [Is [Ja] 6] Jo [0

Parent2 [ Js [32]J:10[ 35 ] J7 [30] Js [ [ J6 ] Jo ] Parent 2 [ Js [ 32 [Jio] 35 ] I [3n] Js [ I [ 35 [Fs]

(a) One-point crossover: 1 child. (b) Two-point crossover: 1 child (Vers. I).

Parent 1 [J;[J,]Js | 94]92]96] 971 95| Js [J1o]
S —
i
e —
Child [ [5io[ I3[ T[T [I6 [ 37 [ Ts [ 1 [ 3]

Parent 2 [Js] J; [Jio] J5 [37] J: [I] e J6] Js |

(c) Two-point crossover: 1 child (Vers. II).

Fig. 4. Illustration of crossover operators.

4.2 Mutation Operators

We examined the following four mutations used by Murata in [9]: adjacent two-job
change (Adj2JC), arbitrary two-job change (Arb2JC), arbitrary three-job change
(Arb3JC) and shift change (SC).

We developed a new mutation operator called the arbitrary 20%-job change
(Arb20%JC), as we can see in Fig. 5. This mutation selects 20% of the jobs in the
child chromosome. The 20% of the jobs to be changed are arbitrarily and randomly
selected, and the order of the selected jobs after the mutation is randomly specified.
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The percentage in this mutation operator gives the operator some flexibility, i.e. the
number of jobs to be changed depends on the size of the chromosome.

EAEAEAEAEAEAN A ENEAEN

EAEEAFARAEAEAEAEAY

Fig. 5. Arbitrary 20%-job change.

4.3 Examination of Crossover and Mutation Operators

The aim of this subsection is to examine the twelve crossover operators and the five
mutation operators, presented in the last two subsections.

When the crossover operators were examined the mutation operator was not used
and when the mutation operators were examined the crossover operator was not used.
Each crossover operator was examined by using the following conditions: number of
tests, 20; initial population ¥, , constant; number of jobs, 40; instance used, constant;

population size N,,,, 20, 40, 60, 80 and 100; stopping condition, 1000 generations;
crossover probabilities P., 0.2, 0.4, 0.6, 0.8 and 1.0; mutation probabilities P,, 0.2,
0.4, 0.6, 0.8 and 1.0; mutation operators and mutation probabilities, not used in the
examination of crossover operators; crossover operators and crossover probabilities,
not used in the examination of mutation operators.

We used the following performance measure with the aim of evaluating each
genetic operator:

Performance = f (X)) — f(X,,4) Oy

where X.

o 1S the best chromosome in the initial population and X, , is the best

chromosome in the last population. That is, f(x,,,, ) is the fitness average (of the 20

computational tests) of the best chromosomes in the initial population and f(x,,,) is

the fitness average of the best chromosomes at the end of the 1000 generations. The
performance measure in (1) gives the total improvement in fitness during the
execution of the genetic algorithm.

We used 20 computational tests to examine each crossover and mutation operator.
The average value of the performance measure in (1) was calculated for each
crossover and mutation operator with each crossover probability (P.), each mutation
probability (P,) and each population size (N,,,). Table 1 and Table 2 show the best
average value of the performance measure obtained by each crossover operator and
by each mutation operator with its best crossover probability, best mutation
probability and best population size.
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Table 1. Classification of the crossover operators.

Position Crossover P. Npop Performance

IS TPC4C 1.0 100 3834.1
ond TPC3CV2 1.0 100 3822.9
30 TPC2CV2 1.0 100 3821.8
4 PBX 1.0 80 3805.8
5t TPCICV2 0.8 100 3789.3
6 CcX 0.8 80 3788.7
7t TPC3CV1I 0.8 80 3680.2
gt TPC2CV1I 10 80 3662.1
oth OPC2C 0.6 100 3647.8
10" 0X 1.0 100 3635.4
1 TPCICVI 1.0 100 3624.7
12t OPCIC 0.6 100 3570.5

Table 2. Classification of the mutation operators.

Position Mutation P, Npop Performance

™ Arb20%JC 1.0 100 3833.9
ond Arb2JC 0.8 100 3826.4
31 Arb3IC 1.0 60 3814.9
4" SC 08 60 3673.5
5t Adj2]C 0.4 100 3250.4

S Computational Tests

This section presents the computational results obtained with 40, 50 and 100 jobs.
From the OR-Library [10] we randomly selected some instances of SMTWT
problems with 40, 50 and 100 jobs. We used 20 computational tests for each instance
of the SMTWT problem. We used the six best crossover operators (see Table 1) and
the best mutation operator (see Table 2) in the HybFlexGA. Each instance of the
SMTWT problem was examined using the following conditions:

— Number of tests: 20;

— Initial population ¥, : randomly generated;

— Number of jobs: 40, 50 and 100;

— Instance used: from the OR-Library [10];

— Population size N,,,: 80 and 100 (see Table 1 and Table 2);

— Stopping condition: 1000 generations for the instances with 40 and 50 jobs
or the optimal solution, and 5000 generations for the instances with 100 jobs
or the optimal solution;

— Crossover operators: the six best crossover operators in Table 1;

— Crossover probabilities P,.: 0.8 and 1.0 (see Table 1);

— Mutation operators: the best mutation operator in Table 2;

— Mutation probabilities P,,: 1.0 (see Table 2).
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Table 3 shows the computational results obtained for the SMTWT problems with
40, 50 and 100 jobs. In this table we have the number of tests with optimal solution,
the CPU time average (in seconds) and the generation average for each instance
problem. For example, we chose the TPC4C with P.=1.0, Arb20%JC with P,=1.0 and
instance 40A (SMTWT problem with 40 jobs, from the OR-Library [10]) in the
HybFlexGA. We used 20 computational tests for this instance. In these tests we
obtained the optimal solutions in 16 tests. In these 16 tests, the CPU time average was
362.4 seconds and the generation average was 593.

As shown in Table 3, we obtained good results with the TPC4C+Arb20%JC,
TPC3CV2+Arb20%JC and TPC2CV2+Arb20%JC combination, for all the instances
with 40, 50 and 100 jobs. However, this table also shows the best results are obtained
for the TPC4C+Arb20%JC combination.

When we used the TPC4C+Arb20%JC combination, the HybFlexGA is very
efficient. For example, in the six instances with 40, 50 and 100 jobs (see Table 3) the
HybFlexGA found 20 tests with an optimal solution in four instances (40B, 50A, 50B
and 100B), and 16 tests with optimal solutions in two instances (40A and 100A).

Table 3. Computational results obtained for the SMTWT problems with 40, 50 and 100 jobs.

Instance 40A 40B 50A 50B 100A 100B

Optimal solution 6575 1225 2134 22 5988 8
TPC4C Tests with optimal solution 16 20 20 20 16 20
+ CPU time average (sec.) 362.4 190.0 88.3 45.5 2405.1 523.9
Arb20%JC  Generations average 593 284 107 54 1611 323
TPC3CV2  Tests with optimal solution 13 15 18 20 15 20
+ CPU time average (sec.) 382.9 2313 112.3 50.4 3851.0 1012.4
Arb20%JC  Generations average 725 402 158 70 3042 727
TPC2CV2  Tests with optimal solution 8 16 17 20 9 20
+ CPU time average (sec.) 369.1 216.8 146.2 92.0 3921.3 1339.8
Arb20%JC  Generations average 380 449 246 152 3685 1142
PBX Tests with optimal solution 0 8 18 20 1 20
+ CPU time average (sec.) -—-- 236.1 144.6 86.3 2067.0 1413.6
Arb20%JC  Generations average - 747 371 218 2957 1828
TPCiCcV2  Tests with optimal solution 0 3 13 20 1 19
+ CPU time average (sec.) -—-- 230.0 224.7 118.2 4104.0 2190.7
Arb20%JC  Generations average - 609 487 252 4948 2405
CcX Tests with optimal solution 0 4 17 20 3 20
+ CPU time average (sec.) -—-- 165.3 107.8 51.0 2594.0 736.4
Arb20%JC  Generations average 551 292 136 3912 1011

6 Conclusion

In this paper we developed an FMC and a software tool called HybFlexGA to study
the scheduling of jobs in FMC with GA. We propose a new concept of genetic
operators for scheduling of jobs in FMC. With the software tool HybFlexGA, we
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examine the performance of various crossover and mutation operators by computing
simulations on job scheduling problems. The HybFlexGA obtained good
computational results in the instances of SMTWT problems with 40, 50 and 100 jobs
(see Table 3). As we demonstrated, the HybFlexGA is very efficient with the
TPC4C+Arb20%JC combination. With this combination, the HybFlexGA always
found more optimal solutions than with the other combinations:
TPC3CV2+Arb20%JC, TPC2CV2+Arb20%JC, and so on. When we used this
combination (TPC4C+Arb20%JC) in the HybFlexGA, the genetic algorithm required
fewer generations and less CPU time to find the optimal solutions. The results
obtained in the scheduling problems of the FMC show how efficient HybFlexGA is in
solving these problems.
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